DETECTION OF INACCURACY IN A MEDICAL KNOWLEDGE BASE USING A CLASSICAL THEOREM PROVER

Pavel Rusnok1 Klaus-Peter Adlassnig1,2

1Section for Medical Expert and Knowledge-Based Systems
Medical University of Vienna, Austria
pavel.rusnok@meduniwien.ac.at

2klaus-peter.adlassnig@meduniwien.ac.at
CADIAG systems

- Computer-Assisted DIAgnosis
- designed at the Medical University of Vienna, Adlassnig
- internal medicine
CADIAG systems

- Computer-Assisted DIAGnosis
- designed at the Medical University of Vienna, Adlassnig
- internal medicine

CADIAG-1

- Classical Logic
- knowledge base checking
- 17 inaccuracies found
CADIAG systems

- Computer-Assisted DIAGnosis
- designed at the Medical University of Vienna, Adlassnig
- internal medicine

CADIAG-1

- Classical Logic
- knowledge base checking
- 17 inaccuracies found

CADIAG-2

- medical expert system based on Fuzzy Logic
- knowledge base to be checked
Rules

CADIAG-1 rules

<table>
<thead>
<tr>
<th>Rule type</th>
<th>IF-THEN statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha) FC (\beta)</td>
<td>if (\alpha) then (\beta)</td>
</tr>
<tr>
<td>(\alpha) ON (\beta)</td>
<td>if not (\alpha) then not (\beta)</td>
</tr>
<tr>
<td>(\alpha) EX (\beta)</td>
<td>if (\alpha) then not (\beta)</td>
</tr>
<tr>
<td>(\alpha) FN (\beta)</td>
<td>if (\alpha) then possibly (\beta)</td>
</tr>
<tr>
<td>(\alpha) OC (\beta)</td>
<td>if (\alpha) then (\beta) and if not (\alpha) then not (\beta)</td>
</tr>
</tbody>
</table>
Rules

CADIAG-1 rules

<table>
<thead>
<tr>
<th>Rule type</th>
<th>IF-THEN statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>α FC β</td>
<td>if α then β</td>
</tr>
<tr>
<td>α ON β</td>
<td>if not α then not β</td>
</tr>
<tr>
<td>α EX β</td>
<td>if α then not β</td>
</tr>
<tr>
<td>α FN β</td>
<td>if α then possibly β</td>
</tr>
<tr>
<td>α OC β</td>
<td>if α then β and if not α then not β</td>
</tr>
</tbody>
</table>

CADIAG-2 rules

- one uniform rule

IF α THEN β WITH $soc, foo, soc, foo \in [0, 1]$
Checking of the knowledge base

Representation

- CADIAG-2’s rules \mapsto form of CADIAG-1’s rules
- first-order logic formulas
Checking of the knowledge base

Representation

- CADIAG-2’s rules \mapsto form of CADIAG-1’s rules
- first-order logic formulas

Consistency Checking

- Prover9
- 10 groups of inaccuracies