Beiträge zu IKT-basierten Unterstützungssystemen für Senioren und Seniorinnen

Paul Panek \(^1,^2\), Georg Edelmayer \(^1\), Peter Mayer \(^1\), Marjo Rauhala\(^1,^2\), Wolfgang L. Zagler\(^1,^2\)

1) Fortec – Technische Universität Wien
2) CEIT – RALTEC – Rehabilitation und Assisted Living Technologien, gemeinnützige GmbH, Schwechat

eHealth 2007
1. Juni 2007, Tech Gate, Wien
Content of this presentation

- **Wearable Devices**
 - SILC – An Extended Emergency Call System
 - ENABLE - Enable elderly people to live well

- **Ambient Assisted Living Technologies**
 - FRR – Intelligent Toilet System
 - Movement – Mobility Enhancement System

- **Establishing a Living Lab for Continuous User Involvement & Ethics**

Setting the Scene

- **Existing alarm phones for old citizens consist of**
 - a remote controlled hands free telephone
 - a button on a wrist worn transmitter device has to be pressed manually to connect to service provider
 - Some devices provide some kind of dead man function and/or combination with fall detectors

- **Problems reported by service providers:**
 - old persons are often very reluctant to press alarm button
 - Often no sufficient motivation to carry the transmitter or fall detector day and night
Functional Ranking from User Panels

- 106 end users (70 primary, 36 secondary = carers) in Italy, Spain, Austria and UK:
 - Health status and fall detection (automatic monitoring)
 - Check call services and periodic contacts (personal communication)
 - Reminders for medication or periodic business (automatic reminder)
 - Remote control of door lock or household appliances (remote control)

This ranking (in priority order) was then used to draw up a technical specification and develop prototypes of the required system modules.
IKT-basierte Unterstützungssysteme für Senioren

SILC - System Structure (2001-03)

Main parts:

Wrist Unit (WU)
(integrated sensors)

Base Station (BS)
linked to the Service Centre (SC)

- **Wrist Unit (WU)**
 - Internal Sensors
 - External Sensors
 - Alarm Button

- **Base Station (BS)**
 - Connected to the Service Centre (SC)
 - PSTN Modem

- **Environment**
 - (e.g. TV)
 - (e.g. pill dispenser)

- **Configuration**
 - (e.g. door lock)

- **Phone calls**
 - (wireless)
 - serial, IR

- **Voice**
 - Data

- **Service Centre**
 - (PSTN Modem)

- **Wrist Unit**
 - Alarm Button
SILC Prototype of wearable device (2003)

- Kernel software and user interface (LCD, buttons, speaker...)
- Internal sensors (IR reflection pulse sensor, temperature sensing module and a 3-axis accelerometer)
- Connection for external sensors (ECG)
- Bluetooth connection to Base Station (up to 37m)
- Additional features like environmental control, clock, calendar, reminder for medication, telephone capability shall make the device indispensable for everyday life.
- External (!) battery
Results

- Verification Tests (23 elderly users, 9 experts) in Austria and UK
- Prototype system in principle operable and tested but significant limitations (2003):
 - Sensors for pulse need improvement do reduce artefacts.
 - Power consumption needs reduction to achieve 12-24 hours operation.
 - Size and weight to be reduced
- Confirmed of value of concept of wearable alarm unit with monitoring and data and speech communication to service centre
ENABLE (FP6, 2007-2009)

- A wearable system supporting services to ENABLE elderly people to live well, independently and at ease
- The project will develop a personal, user-centred enabling system, with services, for use by elderly persons in or out of their homes:
 - to mitigate the effects of ageing and
 - to increase quality of life:
 - independence and autonomy,
 - mobility,
 - communications and social interaction,
 - care and safety.
MOVEMENT (FP6, 2004-2007)

Modular Versatile Mobility Enhancement Technology

Autonomous Platform which can dock to modules for moving people, objects and information
A User Friendly Rest Room - FRR (FP5, 2002-2005) – Role of ICT

- Supportive toilet
- Some components (examples):
 - Adjustability of Tilt and Height of toilet bowl
 - Speech Input and Output
 - Sensors for recognising falls
 - User Identification (RFID)
 - Self adapting to users needs
FRR User Tests 2002 - 2005

- Laboratory: ~200 prototype tests with users in 5 labs in Europe
- Daily Life: ~300 toilet sessions in a day care centre in Vienna
Setting up of an Living Laboratory for Assistive ICT and Older People

- Living Lab (LL) as framework for involving users (elderly and carers) from the outset
 - Co-creating and exploring ideas,
 - Commenting of prototypes,
 - Evaluation of actual benefits in real life setting

- Our Austrian AAL - LL
 - Is located in the city of Schwechat, (Vienna airport area)
 - As part of local initiative “eSchwechat” of the city administration (www.eschwechat.at)
 - First focus on sheltered housing and community care
 - Provides framework for ethical guidance and supervision of appropriate involvement of vulnerable users
Supporting carers of old people
(tele-information about present condition of family member)
eShoe - Prevention and detection of falls

FSR = force sensitive resistor, measuring distribution of pressure

Prevention and detection of falls
Thank you

www.fortec.tuwien.ac.at
www.ceit.at
IKT-basierte Unterstützungssysteme für Senioren

Contact

FORTEC – Research Group on Rehabilitation Technology
Institute Integrated study
Vienna University of Technology
Head: Prof. Wolfgang Zagler

CEIT - Central European Institute of Technology
RALTEC - Rehabilitation and Assisted Living Technologies

www.fortec.tuwien.ac.at
www.ceit.at
www.eschwechat.at
ICT for Ageing Society – Examples

- FRR – Intelligent Toilet
 www.fortec.tuwien.ac.at/frr

- SILC – Extended Emergency Call System
 www.fortec.tuwien.ac.at/silc

- ENABLE – Wearable Device
 www.fortec.tuwien.ac.at/enable

- Movement – robotic mobility platform
 www.fortec.tuwien.ac.at/movement

- AAL – Ambient Assisted Living – Preparing an Article 169 Initiative
 www.aal169.org

- Ethics in Assistive Technology
 http://www.is.tuwien.ac.at/closetothebody/index_en.html
Acknowledgement

From 2001 to 2003 SILC was funded in part by the European Commission within the IST part of the Fifth Framework Programme. Project partners:

- **Austria**: (Co-ordinator) fortec – Institute of Ind. Electronics and Material Science, Rehabilitation Technology; TECWINGS Industrialisierung und Elektronikproduktion GmbH; Joanneum Research, Institute of Noninvasive Diagnostics; Municipality of Vienna, Health Planning Department; Johanniter-Unfall-Hilfe in Österreich

- **Italy**: Regione Veneto, Direzione Servizi Sociali; TESAN S.p.a.

- **Spain**: Ajuntament de Callús; CHC Vitae, S.A

- **United Kingdom**: Cardionetics Limited; Cloudworld Limited; Knowsley Metropolitan Borough Council Social Services
Acknowledgements

- FRR was partially funded 2002-2005 as project QLK6-2001-00458 in the EU/FP5/Quality of Life Programme. Project partners were:
 - Industrial Design Engineering - Delft Univ. of Technology (NL),
 - Fortec - Rehabilitation Technology, Vienna Univ. of Technology (AT),
 - Certec - Dep. of Rehabilitation Engineering, Lund University (SE),
 - EURAG - European Federation of Older Persons (AT),
 - Laboratory of Health Informatics – University of Athens (GR),
 - Applied Computing – Dundee University (UK),
 - Landmark Design Holding (NL),
 - Clean Solution Kft (HU),
 - SIVA (IT),
 - HAGG – Hellenic Association of Geriatrics and Gerontology (GR),
 - Ethical Review: TU Vienna (M. Rauhala, I. Wagner)

- Special thanks to:
 - Austrian MS Society and Caritas Socialis, Vienna
Acknowledgements

- MOVEMENT (contract number 511670, 2004-2007) is co-funded by the European Commission in FP6. Project partners:
 - Vienna Univ. of Technology, AT
 - ARC Seibersdorf Research GmbH, AT
 - iRv - Institute for Rehabilitation Research, NL
 - BlueBotics SA, Otto Bock Health Care, CH
 - Technische Universität München, DE
 - Katholieke Universiteit Leuven, BE
 - Scuola Superiore Sant' Anna, IT.